Anston Greenlands Primary School - Medium Term Maths Curriculum

Year 6

Term I - Boggle Hole/The Escape Room

Objectives	Approximate number of lessons (70 total)	Investigations/variation	Context/links
Read, write, order and compare numbers up to I0,000,000 and determine the value of each digit.	I		Large numbers linked to countries - populations, areas etc. Read and write these numbers and identify value of digits.
Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by I0, I00 and I000 giving answers up to three decimal places.	2 (then M\&O)	A box of labels costs $£ 24$. There are I00 sheets in the box. There are IO labels on each sheet. Calculate the cost of one label, in pence.	Find I0\% and I\%
Round any whole number to a required degree of accuracy.	2	Eduardo says, 'The population of Mexico City is II million (to the nearest million) and the population of New York is II $\cdot 2$ million (to the nearest hundred thousand).' He says, 'The population of New York must be bigger than the population of Mexico City because II 2 million is bigger than II million.' Do you agree with him? Explain your answer. The population of Shanghai is 2I million, to the	Large numbers linked to countries - populations, areas etc.
nearest million. Each person weighs on average 70 kg.			

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Estimate the total weight of all the people in Shanghai. \\
Do you think your answer is more or less than the actual answer you'd get if you weighed everyone in Shanghai accurately?
\end{tabular} \& \\
\hline Add decimal numbers with varying numbers of digits after the decimal point \& 2 \& \begin{tabular}{l}
Can you use five of the digits 1 to 9 to make this number sentence true?

\square + \square \square] $=31.7$

Can you find other sets of five of the digits 1 to 9 that make the sentence true?

 \& \multirow[t]{3}{*}{

Costings linked to enterprise - Escape Room.

Calculations linked to residential - e.g. suitcases, shopping
\end{tabular}}

\hline Subtract decimal numbers with varying numbers of digits after the decimal point \& 2 \& | Two numbers have a difference of $2 \cdot 38$. What could the numbers be if: |
| :--- |
| - the two numbers add up to 6 ? |
| - one of the numbers is three times as big as the other number? |
| Two numbers have a difference of $2 \cdot 3$. To the nearest 10 , they are both 10 . What could the numbers be? | \&

\hline Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why \& 4 \& | A shop sells boxes of chocolates costing $£ 2.60$. The shop also sells packets of sweets. One packet costs $£ \mathrm{I} \cdot 39$. Ramesh has a $£ 10$ note and he wants to buy one box of chocolates. |
| :--- |
| Sara says that Ramesh can work out how many packets of sweets he can buy using the number sentence $10-2.60 \div 1.39$. |
| Do you agree or disagree with Sara? |
| If you disagree, what number sentence do you think Ramesh should use? |
| Explain your reasoning. |
| NRich - Dicey Addition |
| NRich - How much does it cost? | \&

\hline
\end{tabular}

Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate		13 A box contains 2.6 kg of washing powder. Jack uses 65 grams of powder for each wash. He uses all the powder. How many washes did Jack do? \qquad	Calculations linked to residential - e.g. suitcases, shopping Calculations linked to alien 'Top Trumps'
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication	4	It is correct that $273 \times 32=8736$. Use this fact to work out: $\begin{aligned} & 27.3 \times 3.2 \\ & 2.73 \times 32000 \\ & 873.6 \div 0.32 \end{aligned}$	Costings for Escape Room visit and enterprise. Area and Perimeter Volume of cuboids Calculating Means
Multiply one-digit numbers with up to two decimal places by whole numbers	I	$\begin{aligned} & 87 \cdot 36 \div 27 \cdot 3 \\ & 8736 \div 16 \\ & 4368 \div 1 \cdot 6 \end{aligned}$	
Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context	5	In each pair of calculations, which one would you prefer to work out? (a) $35 \times 0.3+35 \times 0.7$ or (b) $3.5 \times 0.3+35 \times 7$ (c) $6.4 \times 1.27-64 \times 0.1$ or (d) $6.4 \times 1.27-64 \times 0.027$ (e) $52 \cdot 4 \div 0 \cdot 7+524 \div 7$ or (f) $52 \cdot 4 \div 0 \cdot 7-524 \div 7$ (g) $31 \cdot 2 \div 3-2 \cdot 4 \div 6$ or (h) $31 \cdot 2 \div 3-1 \cdot 2 \div 0 \cdot 3$ Explain your choices.	
Use written division methods in cases where the answer has up to two decimal places	I		

solve problems involving addition, subtraction, multiplication and division	3	A box of labels costs $£ 63$. There are 140 sheets in the box. There are 15 labels on each sheet. Sara, Ramesh and Trevor want to calculate the cost of one label, in pence. Ramesh uses the number sentence (6300 $\div 140$) $\times 15$. Sara uses the number sentence $63 \div 14 \div 15$. Trevor uses the number sentence (15×140) \div 6300. Who is using the right number sentence? Explain your choice. NRich - Sometimes, Always, Never NRich - Reach 100 NRich - Twenty divided into six NRich - Two and Two	
identify common factors, common multiples and prime numbers	4 Then M\&O	NRich - Abundant numbers NRich - Factors and Multiples game	Area and perimeter Escape Room puzzles
Recognise that shapes with the same areas can have different perimeters and vice versa	2	Given an area, investigate possible rectangles with integer sides and calculate the perimeter. Here is a tiled floor pattern. It is made from squares. Work out the perimeter of the design. Give your answer in metres.	Factors and multiples Prime and Compound numbers

Calculate the area of parallelograms and triangles Recognise when it is possible to use formulae for area and volume of shapes	3								Which of these right-angled triangles have an area of $20 \mathrm{~cm}^{2}$?
Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres (m^{3}), and extending to other units [for example, mm^{3} and km^{3}].	2								Can you find two or more different cuboids Volumes of buildings each with a volume of $64 \mathrm{~cm}^{3}$? What's the same and what's different about your cuboids?
Calculate and interpret the mean as an average.	2								Carol counts the matches in 10 boxes. She works out that the mean number of matches in a box is $\mathbf{5 1}$ Here are her results for 9 boxes. Calculate how many matches are in the 10th box.

| use common factors to
 simplify fractions; use common
 multiples to express fractions
 in the same denomination | 5 | In each number sentence, replace the boxes with different whole numbers less
 than 2 so that the number sentence is true: | |
| :--- | :--- | :--- | :--- | :--- |

