Anston Greenlands Primary School - Medium Term Maths Curriculum

Year 1

Autumn Term - The Boy who grew Dragons (Novel Study)

Objectives	Approximate number of lessons (70 total)	Investigations/variation	Context/real life
Number: Place value within 10			
- To sort objects	1	Children need to sort groups by characteristics before they count. Children should be encouraged to sort objects into groups in a variety of ways, for example, sorting a group of children into girls and boys or sorting counters by colour. Children should be encouraged to line sorted objects up to link to the early representations of bar models. What is the same about all the objects in the set? • What is different about the sets? • Can you find an object that belongs to this set? • Can you find an object that does not belong to this set? Why does it not belong? - Can you think of a different way to sort the objects? Ask children for various ways they think objects can be sorted. Discuss the different ways. For example: Colour, type, size, etc	

		Investigation - What is my rule? - Nrich	
- To count objects	2	Once objects are sorted, children begin to count from 1 to 10 to work out how many there are. It is important that they count one object at a time and that they understand the last number they count is the total amount. Children should be encouraged to place the objects in a line to improve accuracy when counting. They should also be exposed to what zero looks like. How many objects are there? • If I move them around, are there still the same number of objects? Count and check. • Does it matter which object you count first? • Can you count how many claps I do? • Should you start counting at 1 or zero? • How do you know you have counted all the objects? • How do you know you have not counted any objects more than once? Line up the objects. Is it easier to count now? Why? What does one \qquad represent? What number will we say first when we are counting? Why? How many are there in total? When would we count 0 ? What does zero look like? Can you show me a group of zero?	

		Investigation rmeight $\vdots 8=$ Bum	
- Count object from a larger group	2	Circle a group of 2 cats Circle a group of 5 cats. Circle a group of 6 cats. How many cats are not circled in each set?	
		Investigation Marbles in a jar	

One more	1	Once children are confident placing numbers on a track, the language of one more can be introduced. Children need to know that one more is the number after and they should use their counting skills or a number track to help them. The use of a dice and dominoes should be used to reinforce subitising skills. How can counting help us with finding 1 more? Where can one more than \qquad be found on a number track? What does one more mean? Will the number get greater or smaller? Why? How can we show one more? Do we need to count from 0 every time we find one more?
- Count backwards within 10	2	Complete the number tracks. 10 9 2

- 1 less	2	Complee the unumertrock. Complete the sentences. - 1 less than 7 is \qquad \qquad is 1 less than 7 - 1 less than 2 is \qquad \qquad is 1 less than 2	Work outside and put children in pairs to find the objects. - 1 less than 3 leaves - 1 less than 5 sticks
	1	- Draw a line from each bucket to a spade. $0^{\circ} \quad 0^{\circ} \quad 0^{\circ} \quad 0^{\circ} \quad 0^{\circ}$ Is there a spade for each bucket?	
Fewer, more, same	1		Set up a teddy bears' picnic, giving each bear some treats. You could use cubes to rep give the bears some toy objects. Give daddy bear 4 cubes, mummy bear 7 cubes and baby bear 5 cubes. 䠘思 Write the words "fewer", "more" and "same" on some big pieces of paper. Complete the sentences together as a class. Mummy bear has ___ cubes than daddy bear. Baby bear has ___ cubes than mummy bear. Daddy bear has ___ cubes than baby bear. Then give children some cubes and ask them a variety of questions, such as, "Con you show me Discuss the different answers together. set up a dragon picnic
- Less than, greater than, equal to	2	Use straws and cubes to introduce children to the less than, greater than and equal to symbols. Stick what children hegether on your working wail, so that diden have a visual reminder. Children use the language 'equal to', 'more', 'less', 'greater than', 'fewer' and 'less than' to compare groups of objects. Children do not need to know the difference between the	

Number: addition and subtraction (within 10)			
- To introduce parts and whole	1	- Here are some frogs. - Can you see two groups of frogs? - How many frogs are in each group? - Complete the sentences. \qquad \qquad is a part. is a part. The whole is \qquad	Make hoops into dragon houses by decorating them
Part whole model	1	Children should be exposed to various orientations and use the language 'part' and 'whole'. What is a whole? What is a part? How many parts can you see? What is the value of the missing part? What is the value of the whole? How does this help with addition? Can the parts be swapped around? Why? Can the whole and a part be swapped around? Why? complete the part-whole models. How many different ways can you sort the fruit? Complete the part-whole models by drawing counters and then writing the numerals. Here are seven pieces of fruit. Put the fruit into a part-whole model. Complete the sentences. ______ is the whole. Draw the part-whole model that represents the stem sentences: - A part is 4 - A part is 3	Use laminated dragons for objects

		Maths Investigation - Part part whole		
Write number sentences	1			
Fact families - addition facts	2	Which number(s) represent a part? Which number represents the whole? Is the equals sign always at the end of a number sentence? What's the same/different about the four addition sentences? If two of the numbers in the part-whole model are the same, can we still write four addition sentences? Prove it. Can we make another addition calculation using the same 3 numbers? Can the parts change place? Can the whole change place? Why?		

		Maths Investigation - Fact Families	
Number bonds within 10	1		Scales falling off dragons
Systematic number bonds within 10	1	Children combine their knowledge of the part-whole model and addition facts to explore number bonds within 10 Starting with the whole, children break numbers into parts and explore how many different ways a number can be partitioned. Eg. $\begin{aligned} & 5=3+2 \\ & 5=4+1 \end{aligned}$ https://www.topmarks.co.uk/PlayPop.aspx?f=WaystoMake	

Number bonds to 10	1		
		Maths investigation - Number Bonds	
Addition add together	1	In this small step, children begin to formalise the idea of addition as bringing two or more parts together to create a whole. This is a more formal way of looking at the learning they have covered earlier in this block. At this stage, the focus should be on bringing two parts together, rather than adding more, which will be covered explicitly in the next step. When representing their additions, encourage children to use correct mathematical language to explain, for example "3 cubes plus 5 cubes is equal to 8 cubes." The use of "is equal to" rather than "makes" will support children in later learning. Ten frames, counters and Rekenreks are useful manipulatives to support this learning, and part-whole models can be used to represent additions. part-whole model to understand the concept of addition. They should be accurately using the ' + '	

Addition add more	1		
Addition problems	1		
		Maths Investigation - Addition - Two Dice \square	
Find a part	1	Children should apply their understanding of number bonds to solve missing number problems. Building from counting on,	

		children should start from the given part and count on to the whole, to find the missing part. Children should also be exposed to problems with one part and the whole being the same so they understand the role of zero. Practically in pairs to begin with, then on to individual work on sheet. Eva spends 10 p on a chocolate bar and something else. What else could she have bought?	
Subtraction - find a part	2	Now that children have looked at addition in detail, in this small step they begin to think about subtraction by finding a part. The focus of this small step is on the knowledge and use of number bonds to identify missing parts, rather than formal subtraction and the subtraction symbol.	

| Subtraction
 $-($ (take
 away/How
 many left? | 2 | In this small step, children are introduced to the structure of
 subtraction that is "taking away". This is the first time within
 this block that they will have seen such questions. In the same
 way as they were introduced to partitioning, this is done within
 this step without the use of the subtraction symbol. Use of the
 subtraction symbol follows formally in the next small step. |
| :--- | :--- | :--- | :--- |

			\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad	
Geometry - shape				
- To recognise and name 3D shapes	1	Children explore 3D sha each 3D shape and d cylinders and cones. Children to sit in a cir the centre (building Have labels ready (c 3D Hunt Outside Make 3D shapes with	shapes. Use the plastic shapes and a feely bag. Show discuss it's properties cuboids, cubes, pyramids, spheres, ircle on the carpet. Have a selection of 3D objects in blocks, cereal boxes, balls, etc) and 6 hoops ube, cuboid, pyramid, cone, cylinder, sphere)	In pairs - Build a dragons' house using the 3D shapes. Discuss which shapes would be best for the different parts of the house. Ch to then draw their house on sheet and label the shapes used.
- Sort 3d shapes	1	C. θ \square \qquad \qquad (3) \qquad \qquad	$\square \Delta \Delta$	

- Recognise and name 2 D shapes	1		
- Sort 2 D shapes	1	© \qquad \qquad $\triangle \triangle \Delta$	
- Patterns within 2D shapes	1	In this small step, children create patterns with 2-D and 3-D shapes. They should experience both repeating patterns (ABAB) and symmetrical patterns (ABBCBBA), but do not need to know the names of these types of patterns. \qquad $\square \Delta \bigcirc \square \Delta \bigcirc \square \Delta$ O sey the potern tronolec circe \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad	
-		Maths Investigation - Shape Jig Shapes \qquad	

